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• QCP: Definition

• A simple example

• How is a QCP detected in a finite temperature
measurement?

• Experiments — evidence of a ubiquitous metallic
state

• Role of dissipation — change of the universality
class
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Definition

• Classical critical point—thermal fluctuations—scale
invariance—divergent correlation length. Free en-
ergy is a non-analytic function at T = Tc.

• Quantum critical point—quantum fluctuations at
T = 0—scale invariance—divergent correlation
length. Ground state energy is a non-analytic func-
tion of tuning parameter g = gc.

g may be charging energy in a Josephson junction
array, magnetic field in a field tuned superconductor-
insulator transition, or in a quantum Hall plateau tran-
sition, or doping (which destroys antiferromagnetism)
in the parent high Tc superconductor, or disorder in a
conductor in a metal-insulator transition.
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Correlation length: ξ ∼ 1
|g−gc|ν

Correlation time: ξτ ∼ ξz

ν: correlation length exponent
z: dynamical exponent
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1D Ising model in a transverse field: a simple example

H = −h
∑
i

σx
i − J

∑
i

σz
i σz

i+1

When the transverse field h → ∞, the ground state
is disordered. Each site is independent of the other,
and there is an excitation gap of 2h between the state
1√
2
(| ↑〉 − | ↓〉) and 1√

2
(| ↑〉+ | ↓〉). When J → ∞,

the ground state is ordered. The ground state cor-
responds to all spins, | ↑〉, or all spins down, | ↓〉,
reflecting broken symmetry. There is a T = 0 phase
transition at a critical value of gc = (h/J)c, which is
in the same universality class as the 2D Ising model
solved by Onsager. The correlation length exponent
ν = 1. The dynamic exponent z = 1 (massless Dirac
fermions at gc).
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There is more to it than meets the blinking eye.
•Classical statistical mechanics — dynamics and ther-
modynamics are independent of each other.
•Quantum mechanics — dynamics and thermodynam-
ics are intimately tied to each other.

Classes of quantum phase transition, which do not
have classical analogs.

1. Localization of an electron in a random poten-
tial (Anderson localization)—ground state energy
is an analytic function of disorder—yet insulating
and metallic phases are distinct states of matter.
Also integer quantum Hall plateau transitions.

2. Quantum phase transition involving Berry phases.

3. Topological phase transitions on a non-trivial man-
ifold.
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Important

All T 6= 0 transitions are “classical” by definition—
even in a highly quantum system like superfluid He-
lium.

Close to T 6= 0 critical point quantum fluctuations are
important on a microscopic scale, while classical ther-
mal fluctuations dominate on macroscopic scales—
can be described by classical statistical mechanics
with an effective Hamiltonian of an order parameter
field.
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How does one determine QCP from finite temperature
measurement?

Ising model on a strip (∞× L): a digression

Infinite in extent

L

H = −J
∑
〈ij〉

SiSj, Si = ±1

• No phase transition as long as L is finite.

• For L = ∞, the phase transition is at Kc =

J/kBTc = 0.44068 . . . and ξ ∼ |T −Tc|−ν, with
ν = 1.

• How can we find this transition from strips of finite
width L?

7



Explicit finite size scaling in Ising model in a strip
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Finite-size scaling hypothesis states that

L

ξ
= A + BtL1/ν + O(t2), t =

∣∣∣∣T − Tc

Tc

∣∣∣∣→ 0.

If we tune T to Tc of the infinite system, (L/ξ) will be
independent of the width of the strip L. Converesely,
if the curves for (L/ξ) have a unique crossing point,
it must be the Tc of the infinite system.

A similar finite-size scaling trick works for finding QCP.
One can show that a 2D quantum system can be
viewed as a finite slab, where Lx = Ly = ∞, but
Lz = 1/T1/z → ∞ as T → 0, where z is the dy-
namical exponent.
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Determination of the QCP gc
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Universal scaling functions
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Stanford group: Kapitulnik et al.

Experiments:Experiments:

  amorphous superconductor: Mo43 Ge57

Experiments done on patterned films in a dilution refrigerator

2-3a0 ~3-6Å
homogeneous to < 20Å

Tc  of bulk ~ 7 K

Tc  of 30 Å film ~ 0.5 K

x (0) ~ 100 Å

l(0) ~ 8000 Å

 Hc2 ~ 1.4T

I+ I-V+ V-

  

† 

l ~
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Courtesey: A. Kapitulnik.

Two possible Superconductor-Insulator Transition at T=0:Two possible Superconductor-Insulator Transition at T=0:
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Superconductor --> Fermi-Insulator

1) Superconductivity is destroyed by disappearance 
of Cooper pairs altogether. Cooper attraction is reduced 
due to Large Coulomb interaction. *

*A.M. Finkelstein, JETP Lett. 45, 46 (1987).

This model however neglects quantum fluctuations of the 
Bosonic field! Free electrons exist!

2) Bosons in a random potential. Pairs can become 
localized due to coulomb repulsion.
Equivalent to array of Josephson-Junctions (EJ vs. EC). *

* M.P.A. Fisher, Phys. Rev. Lett. (1990).

No free electrons exist!
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Yazdani and Kapitulnik: apparent superconductor-insulator
transition.

Crossing point for
T > 100 mK

Scaling for T > 100 mK

Crossing point and scalingCrossing point and scalingCrossing point and scaling

T = 50 mK

n   =1.33±0.05z
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Mason and Kapitulnik: apparent dissipative metallic
state at low temperatures.

Rc

Resistive transitions for T > 20 mK

14



Mason and Kapitulnik: breakdown of scaling.

Broadening of Crossing at Low T:Broadening of Crossing at Low T:

Disruption of Scaling
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Courtesey: A. Goldman
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Ga20

Amorphous Ga grown on a
  glass substrate.

Clear evidence of metallic
  behavior at low tem-
  peratures.

Also have local supercon-
  ductivity.

Motivated early work of 
  Chakravaryet al. On dis-
  sipation-controlled transi-
  tions. 

Jaeger ~ 1989
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Goldman et al. : disorder tuned superconductor-insulator
transition in a-Bi on a-Ge film.

Resistance vs. Temperature at Various Thicknesses
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All films appear metallic in the limit of zero temperature!
(actually measured down to the bottom T << 50mK)
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Dissipation and its Importance

• Ubiquity of a low temperature metallic phase and
hence disssipation at low temperatures

– Two-dimensional metal-insulator transition in
Si-MOSFET

– Field tuned superconductor-insulator transition,
with an intermediate metallic phase

– Quantum Hall-insulator transition

– Superconductor-metal-insulator transition (B=0)

– Sinking of the extended states

– Low temperature saturation of phase breaking
times in transport

– Possibly others
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A d-dimensional quantum system coupled to a dis-
sipative heat bath is likely to change the universality
class of the QCP. The key reason is that the Caldeira-
Leggett Ohmic heat bath induces a special non-local
temporal interaction, while most renormalization group
analyses are based on local interactions.

• Ising model in a transverse field coupled to dissi-
pation: Philip Werner (ETH), Matthias Troyer (ETH),
and S. C. Extensive numerical simulations indi-
cate that the universality class is dramatically al-
tered.

• Quantum criticality is a both precise and fascinat-
ing concept. Rigorous results are theoretically
known, and yet experimental confirmations in a
clean system are hard to come by.

• There seems to be a ubiquitous metallic state at
low temperatures. Its origin is unknown, and its
proper theoretical treatment is also unknown.
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